113 Class Problems: Symmetry in Euclidean Space

1. Let X be a tetrahedron, centered at $\underline{0}$ in \mathbb{R}^{3}. Let $\operatorname{Sym}(X)$ be its symmetry group. Observe that $\operatorname{Sym}(X)$ acts on $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$, the vertices of X.

(a) Does $\operatorname{Sym}(X)$ act faithfully on $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$?
(b) Does $\operatorname{Sym}(X)$ act transitively on $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$?
(c) What is the size of the subgroup $\operatorname{Stab}\left(A_{1}\right)$?
(d) What is the size of $\operatorname{Sym}(X)$?
(e) What familiar group is $\operatorname{Sym}(X)$ isomorphic to?

Solution:
a) Yes. Any $x \in \mathbb{R}^{3}$ is uniquely determined by

$$
\left\{d\left(\underline{x}, A_{1}\right), d\left(\underline{x}, A_{2}\right), d\left(\underline{x}, A_{3}\right), d\left(\underline{x}, A_{4}\right)\right\} .
$$

Hence it we know $\left\{f\left(A_{1}\right), f\left(A_{2}\right), f\left(A_{3}\right), f\left(A_{4}\right)\right\}$ we known $f(\underline{x})$.
b) Yes, A_{i} can be moved to any A_{j} by an empupaiate rotation.
c) $\operatorname{stch}\left(A_{1}\right) \cong D_{3} \Rightarrow\left|\operatorname{stab}\left(A_{1}\right)\right|=6$
d) $|\operatorname{Sym}(x)|=\left|\operatorname{Stab}\left(A_{1}\right)\right| \cdot\left|\operatorname{Orb}\left(A_{1}\right)\right|=6 \times 4=24$
e) Action is faithful \Rightarrow Sym c x) isommplic to a sulogroys of Sym_{4}

$$
\begin{aligned}
\left|s_{y m}(x)\right| & =24=4!=\left|s_{y m 4}\right| \\
\Rightarrow \quad S_{y m}(x) & \cong \operatorname{sym}_{4}
\end{aligned}
$$

